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A problem of the one-photon-excitation fluorescence polarization spectroscopy of macroscopically isotropic
media, in the case of combined high-aperture excitation and detection, is considered and described in a spherical
representation. The case of inhomogeneous intensity distribution in the cross-section of the parallel beam of
exciting light, which is converted by an objective lens into inhomogeneous radial distribution of the intensity
of the focused exciting light, is also taken into account. The obtained formalism is adapted to the description
of confocal fluorescence polarization microscopy. It is shown that the total and magic-angle-detected
fluorescence decays do not solely represent the kinetic evolution of the excited-state because of the contribution
of the dynamic evolution of photoselected fluorophores. The time-evolution of emission anisotropy is
nonexponential. The outlined theory predicts that the total and magic-angle-detected fluorescence decays
solely represent the kinetic fluorescence decay, and thereby, the emission anisotropy becomes an (multi)-
exponential function of time for the excitation-detection cone half-angles not higher than about 15-20°.
The initial values of the emission anisotropy are not modified by the application of the excitation-detection
apertures if the cone half-angles do not exceed 10-15°. The histograms of unpolarized fluorescence, calculated
from the parallel and the perpendicular components of polarized fluorescence, detected at the excitation-
detection cones wider than about 65° solely represent the kinetic fluorescence decay. At such conditions, the
microscope objective operates like an “integrating sphere”. The calibration method, which is based on a
general (symmetry adapted) formula describing fluorescence polarization experiments on macroscopically
isotropic samples, is discussed. This method enables the analysis of all fluorescence polarization experiments
without the necessity of considering the expressions for polarized fluorescence decays relating to a particular
experimental case of interest. With this method, any commercially avaliable microscope objective can be
calibrated, and its optical properties can be precisely verified. The application of the outlined theory to different
fluorescence spectroscopy techniques is indicated. The expressions derived for confocal fluorescence
polarization microscopy can be employed in the numerical analysis of the data recovered from the
photochemical bioimaging.

1. Introduction

In many practical cases of different optical spectroscopy
techniques (e.g., Raman and resonance Raman scattering,1-8

one- or multiphoton-excitation fluorescence spectroscopy,9-19

evanescent-wave-excitation fluorescence spectroscopy,20-22 or
fluorescence-detected linear dichroism23), high-aperture focusing
and collecting lenses are used as the basic components of an
experimental setup being employed in a given technique or, quite
often, they are employed for obtaining the detected signals at
proper signal-to-noise ratios. For example, in some experimental
cases, the standard parallel-beam-excitation and/or -detection
fluorescence measurements may lead to very weak fluorescence
signals (e.g., for very thin molecular assemblies, for very low
concentrations of the fluorophores, or in the case of fluorophores
with extremely low quantum yield). This difficulty becomes
particularly enhanced in the case of fluorescence spectroscopy
with polarized light because the population density of excited-
state molecules is drastically reduced due to photoselection of
the ground-state molecules by linearly polarized exciting light,

whereas the intensity of detected fluorescence is further reduced
because the light is collected through an analyzer selecting a
particular polarization of the fluorescence signal. In such cases,
the intensity of fluorescence detected can be increased by
performing the fluorescence polarization measurements under
high-aperture-excitation and/or -detection experimental condi-
tions. On the other hand, one- or multiphoton-excitation confocal
fluorescence microscopy10,16,23-25 and confocal (resonance)
Raman microscopy2-8 are the best examples of the optical
spectroscopy techniques in which, by their nature, the objective
lenses play the key role in the excitation and detection and in
which the high-aperture-excitation and -detection experimental
conditions are combined.

The high-aperture excitation and/or detection fluorescence
polarization experiments require a modified theoretical descrip-
tion of the polarized fluorescence intensity, because the
polarizations (directions of the electric field) of the exciting light
and detected fluorescence are distributed within correspondingly
wide cones at the focus, where the excitation and emission
processes take place.

To our knowledge, the first treatment of the high-aperture-
detection fluorescence polarization spectroscopy was presented
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by Dragsten.13 He has derived the expressions describing the
transformation of the Cartesian components of polarized fluo-
rescence light emitted at the focus (focal space). The objective
lens transforms the collected fluorescence into a parallel beam
of light (laboratory space), which is then analyzed by a polarizer.
By considering the so-called equivalent reflection planes,
substituted for a lens, and by employing vector algebra, Dragsten
has expressed the parallel (I|) and perpendicular (I⊥) components
of polarized fluorescence, selected by an analyzer in the
laboratory space, by two corresponding linear combinations of
three Cartesian components of polarized fluorescence, emitted
at the focus. Both linear combinations are expressed by the same
set of three, normalized, transformation coefficients.13

Almost in parallel, the same problem was discussed by
Axelrod.14 To describe the high-aperture-detection fluorescence
polarization, Axelrod has introduced a fantastic idea of employ-
ing the properties of the meridional planes,26 which are defined
by the optical axis of an objective lens and the rays propagating
within the cone of the detected fluorescence. The expressions
describing the relationships between the Cartesian components
of polarized fluorescence in the focal and laboratory spaces,
derived by Axelrod, are almost identical to the ones obtained
by Dragsten,13 which differ only in that the three transformation
coefficients obtained by Axelrod are unnormalized. The high-
aperture detection problem was further discussed by Axelrod
in ref 27 for the case of fluorescence polarization microscopy,
but without combining it with the high-aperture excitation case.
In that paper, following the theory of electromagnetic field
distribution in the region of focus by Richards and Wolf26 that
was further developed by Yoshida and Asakura28 for the case
of the coherent collimated Gaussian beams of light, Axelrod
discussed the problem of the intensities of polarized components
of the incident light at the focal plane, in particular, the
dependence of these intensities on the ratio of the half-width
of a Gaussian intensity profile and the focal length of an
objective lens.

To our knowledge, the practical theory of fluorescence
depolarization analysis for the microscopic measurements
introduced by Koshioka, Sasaki, and Masuhara11,12was the first
treatment to the problem of polarization effects in the confocal
fluorescence microscopy in which the high-aperture-excitation
and -detection conditions are combined. In this method, the
microscopic polarized fluorescence decaysD| andD⊥, detected
in the laboratory space through a depolarizer, are expressed in
terms of the corresponding decaysI| and I⊥ that would be
obtained from the traditional fluorescence polarization measure-
ments, that is,D| ∼ (1 - k1)I| + k1I⊥ andD⊥ ∼ k2I| + (1 -
k2)I⊥, from which the decay of emission anisotropyr(t) ) (I|

- I⊥)/(I| + 2I⊥) is reconstructed and analyzed. The parameters
k1 andk2 are obtained from the microscopic measurements on
a reference fluorophore that exhibits particular properties,
namely, photophysics and rotational dynamics are monoexpo-
nential functions of time, and furthermore, the absorption and
emission dipole moments are coaxial.

In our recent article29 we have presented a derivation of the
expressions describing high-aperture-excitation and/or -detection
fluorescence spectroscopy with polarized light, involving the
idea introduced by Axelrod,14 using the meridional planes26 to
describe the transformation of polarization direction of the
linearly polarized light passing through an objective lens.
However, we have formulated this problem in the more
convenient spherical coordinate representation, in which the
excitation and emission processes are described in terms of the
corresponding irreducible tensorial sets. This has allowed us to

obtain a mathematical description of the combined high-
aperture-excitation and -detection experimental conditions.

In this article we consider the problem of high-aperture-
excitation and -detection fluorescence polarization spectroscopy
for macroscopically isotropic molecular media (e.g., membrane
suspensions and labeled macromolecules or solutions), for the
case of one-photon excitations. We first discuss a derivation of
the expression for polarized fluorescence decay in terms of
irreducible tensorial sets (Section 2), and next, we recall the
basic formulas that are well-known in traditional fluorescence
polarization spectroscopy (i.e., the total fluorescence decayItot-
(t), magic-angle-detected fluorescence decayImag(t), unpolarized
fluorescence decayIunp(t), and the emission anisotropy decay
r(t) at parallel-beam-excitation and -detection conditions; Section
3). In Section 4 we consider this problem again, but for the
combined high-aperture-excitation and -detection experimental
conditions. In particular, we display in more detail the effect
of the laser beam cross-section intensity profile on the distribu-
tion of the fluorophores photoselected at the focus and on the
fluorescence polarization detected.

In Section 5 we discuss the description of fluorescence
polarization experiments for macroscopically isotropic molecular
systems (e.g., membrane suspensions and labeled macromol-
ecules or solutions) at high-aperture excitation and detection
for a general geometric configuration (i.e., when the direction
of excitation and direction of detection of polarized fluorescence
make an arbitrary angle). We derive the expressions for parallel
I|(t, F0, σ0, ∆ψ) and perpendicularI⊥(t, F0, σ0, ∆ψ) components
of polarized fluorescence decays, where∆ψ is the angle between
the excitation and detection directions, and whereF0 and σ0

are the excitation and detection cone half-angles. From these
decays we obtain and then discuss the properties of the total
fluorescence decayItot(t, F0, σ0, ∆ψ) and emission anisotropy
decayr(t, F0, σ0, ∆ψ). A general conclusion that we draw is
that at the high-aperture excitation or/and -detection conditions,
Itot(t, F0, σ0, ∆ψ) does not represent the decay of total
fluorescence because the time evolution ofItot(t, F0, σ0, ∆ψ) is
not purely kinetic (i.e., there is a contribution from the dynamic
evolution of photoselected fluorophores). This contribution
depends on the excitation and detection cone half-angles,F0

and σ0, respectively. The emission anisotropy, at the same
conditions, is a nonexponential function of time, and the
manifestation of this property varies strongly with the change
of F0 and σ0. The initial values of the emission anisotropy
essentially depend onF0 andσ0.

By setting∆ψ ) 0° in all those expressions derived in Section
5, which concern the combined high-aperture-excitation and
-detection, we immediately obtain the description of confocal
fluorescence polarization microscopy (Section 6). This descrip-
tion is characterized by evident transparency and simplicity, and
thereby, the content of Section 6 may find very serious practical
applications in the analysis of time-resolved fluorescence
lifetime imaging (FLIM), Förster resonance energy transfer
(FRET), or in time-resolved emission anisotropy imaging. We
examine, in a more systematic way, the basic properties of the
total fluorescence decayItot(t, R0), the emission anisotropy decay
r(t, R0), and the properties of both polarized fluorescence decays
I|(t, R0) and I⊥ (t, R0), whereR0 is the excitation-detection
cone half-angle of a microscope objective. The termItot (t, R0)
does not solely represent the kinetic fluorescence decay because
the decay ofItot (t, R0) is evidently contributed to by the dynamic
evolution of photoselected fluorophores, in general experimental
conditions. We show thatItot (t, R0) represents solely kinetic
fluorescence decay atR0 values lower than 15-20°. We also
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demonstrate that ther(t, R0) is a nonexponential function of
time, in general experimental conditions. However, it becomes
a multiexponential function of time forR0 values lower than
15-20°, but a more accurate determination of the initial values
of the emission anisotropy requires narrower excitation-
detection cones (i.e.,R0 should not be higher than 10-15°).
These predictions agree very well with the experimental
conditions of typical confocal fluorescence microscopy studies,
reported in the literature, aimed at the recovery of fluorescence
lifetimes and emission anisotropy decay parameters (e.g., refs
16-19).

In the last part of Section 6 we derive the expressions for
polarized fluorescence decays at combined high-aperture excita-
tion and detection conditions, which relate to fluorescence
polarization microscopy, for a coherent TEM00 exciting laser
beam with a Gaussian intensity profile, with the application of
the results of papers by Richards and Wolf,26 by Yoshida and
Asakura,28 and by Axelrod.27 The forms of the obtained
expressions are identical with the corresponding ones derived
with the application of the meridional plane properties.

By following the conception by Koshioka, Sasaki, and
Masuhara11 of using the reference fluorophore, in Section 7 we
discuss the calibration method that enables one to analyze any
one-photon-excitation fluorescence polarization experiment on
an arbitrary, macroscopically isotropic sample. In this method,
all fluorescence polarization experiments are described by one
symmetry adapted formula, which is a linear combination of
two time-dependent basis functions. The decay parameters
describing the kinetic and dynamic evolution of excited-state
fluorophores can be optimized without considering the explicit
expressions that describe polarized fluorescence decays related
to a particular experimental case of interest. Furthermore, this
method enables one to experimentally compare and verify both
descriptions of the fluorescence microscopy discussed in this
article. Finally, with this method, any commercially avaliable
microscope objective can be calibrated, and its optical properties
can be precisely verified.

2. One-Photon-Excitation Polarized Fluorescence Decays

The intensity of polarized fluorescence decay can be described
by the following relation (eq 1);30

whereC includes all constant factors and Ph(t) represents the
kinetic fluorescence decay not coupled with rotational dynamics
of fluorophores.f (Ω0) describes the angular distribution of
fluorophores, and in the case of a macroscopically isotropic
system it equals 1/8π2. The termp(Ω0, 0|Ω, t) is the Green
function describing the rotational dynamics of fluorophores. It
describes a conditional probability for finding an excited
molecule at timet and at angular orientationΩ, provided that
it was excited att ) 0 and its orientation wasΩ0. The Euler
anglesΩ0 ) (R0, â0, γ0) andΩ ) (R, â, γ) describe the angular
orientation of a molecule-fixed frameXMYMZM in the laboratory-
fixed frame XLYLZL, at time momentst ) 0 and t g 0,
respectively. The termsPex

(êi)(Ω0) and Pem
(êf)(Ω) describe the

angular dependence of the probabilities of excitation and
detection of polarized fluorescence.30

The unit vectors (versors)êi and êf denote linear polarization
of exciting and detected light, respectively, and versorsûab and
ûem denote the direction of absorption and emission dipole
moments, respectively. Angular orientations ofêi, êf, ûab, and
ûem are described, in theXLYLZL frame, by polar angles (θi

(L),
æi

(L)), (θf
(L), æf

(L)), (θa
(L), æa

(L)) and (θe
(L), æe

(L)), respectively.Ei )
(êi X êi), Ef ) (êf X êf), A ) (ûab X ûab), andF ) (ûem X ûem)
are the second-rank Cartesian tensors defined as the tensor
products of the corresponding vectors, where a tensor product
of two vectorsa andb is defined bya X b ) [aibj]. The terms
Ei, Ef, A, andF are the excitation, detection, absorption, and
emission tensors, respectively. The colon at the right-hand sides
of eqs 2 and 3 means the scalar product of two Cartesian tensors,
which for two second-rank Cartesian tensors,A andB, is defined
by the relationA:B ) ∑i,jAijBji. The relationship between the
scalar products in Cartesian and spherical representations reads
as shown in eq 4;

whereA(K) andB(K) (K ) 0, 1, 2) are two irreducible tensorial
sets, andAm

(K) and Bm
(K) (m ) -K, ..., K) are their spherical

components.31,32

Let versorâ represent one of the versorsêi, êf, ûab, or ûem.
Then, the tensorial product (â X â) can be expressed in terms
of the corresponding product of spherical vectora(1), that is, in
terms of irreducible tensorial setsT(K) ) (a(1) X a(1))(K), where
K ) 0, 1, 2, and where31,32

In this formula, the spherical componentsap
(1)

have been
replaced by the modified spherical harmonicsC1,p(θ, æ) )
x4π/3Y1,p(θ, æ), where (θ, æ) is the polar angles describing
the orientation ofâ in the laboratory frame, andC(11K; pq) is
the Clebsch-Gordan coefficients. Consequently, we obtain eq
6.

The tensorial setT(1) disappears because (â X â) is a symmetric
Cartesian tensor. Finally, according to eq 4,Pex

(êi)(Ω0) and
Pem

(êf)(Ω) take the forms shown in eqs 7 and 8.

Iêi,êf
(t) )

C Ph(t) ∫Ω ∫Ω0
Pex

(êi)(Ω0)f (Ω0)p(Ω0, 0|Ω, t)Pem
(êf)(Ω) dΩ0 dΩ

(1)

Pex
(êi)(Ω) ∼ |ei ûab|2 ) (êi X êi

/):(ûab X û/

ab) ) Ei:A (2)

Pem
(êf)(Ω) ∼ |ef ûem|2 ) (êf X êf

/):(ûem X û/

em) ) Ef:F (3)

A:B ) ∑
K)0

2

A(K).B(K) ) ∑
K)0

2

∑
m)-K

K

(-1)mAm
(K)B-m

(K) (4)

Tm
(K) ) (a(1) X a(1))m

(K) ) ∑
p,q)-1

1

C1,p(θ, æ)C1,q(θ, æ)

C(11K;pq) (5)

T0
(0) ) - 1

x3
T0

(1) ) T(1
(1) ) 0 Tm

(2) )

x2
3
C2,m(θ, æ) (m ) 0, (1, (2) (6)

Pex
(êi)(Ω0) ∼ Ei

(0) . A(0) + Ei
(2) . A(2) )

1

3
+

2

3
∑

m)-2

2

C/

2,m(θi
(L), æi

(L))C2,m(θa
(L)(0), æa

(L)(0)) (7)
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Taking into account the above results, the intensity of
polarized fluorescence (eq 1) can be rewritten in the following
form (eq 9).

The second-rank modified spherical harmonicsC2,m(θi
(L), æi

(L)),
C2,n(θf

(L), æf
(L)), C2,m(θa

(L)(0), æa
(L)(0)), and C2,n(θe

(L)(t), æe
(L)(t))

represent the spherical components of tensorsEi, Ef, A, andF,
respectively. The angular averages〈(...)〉 denote the double
integration occurring in eq 1.

Equation 9 concerns molecular systems of arbitrary macro-
scopic symmetry, that is, biaxial media (e.g., biaxial liquid
crystals or some of the Langmuir-Blodgett (LB) films), uniaxial
media (e.g., most of the LB films, planar membranes, or
molecular monolayers deposited on a glass plate), membrane
vesicles suspension, labeled macromolecules, and solutions.
However, this formula can be adapted to a particular symmetry
of the medium and to a particular symmetry of the fluorophores
by projecting it into a symmetry adapted form with the
application of appropriate projection operators.

For example, for media that are macroscopically isotropic
(spherically symmetric), formula 9 must be totally symmetric
with respect to an arbitrary rotation of the laboratory fixed-
frame. In other words, this formula must be invariant with
respect to all symmetry operations in a proper rotation group
of symmetryO(+)(eq 3). The symmetry adapted form of eq 9 is
obtained by employing the projection operator shown in
eq 10;

whereR(Ω′) is the rotation operator transforming the laboratory
frame into a new orientation. Note thatR(Ω′)C2,m(θ(L), æ(L)) )
C2,m(θ(L)′, æ(L)′), whereC2,m(θ(L)′, æ(L)′) is the modified spherical
harmonics in a new laboratory frame, and the relationship
between both sets of modified spherical harmonics is given by
C2,m(θ(L)′,æ(L)′) ) ∑m′D(2)

mm′(Ω′)C2,m′(θ
(L),æ(L)).31,32 The appli-

cation of eq 10 to a single modified spherical harmonics leads
to eq 11

because the integral takes the zero value.31,32 This means that
the second and third terms disappear in the symmetry adapted
form of eq 9 because Sˆ iso[C

/

2,n(θi
(L),æi

(L))] ) 0 andŜiso[C2,n(θf
(L),

æf
(L)]) ) 0, for eachn andp. The application of eq 10 to the

fourth term in eq 9 gives eq 12.

Finally, by replacing in eq 9 each productC/

2,m

(θi
(L),æi

(L))C2,n(θf
(L),æf

(L)) by the corresponding symmetry adapted
linear combination (eq 12) and by neglecting the vanishing
second and third term in eq 9, we obtain its symmetry adapted
form (i.e., eq 13);

whereW(t) ) ∑m)-2
2 C /

2,m(θa
(L)(0),æa

(L)(0))C /

2,m(θe
(L)(t),æe

(L)(t))〉 is
the symmetry adapted correlation function for rotational diffu-
sion.

If the spherical components of the excitation and detection
tensors do not require any further transformation, then the above
formula can be replaced by the one commonly known in the
literature (eq 14),9

where

and whereθif
(L) is the angle between the versorsêi andêf in the

laboratory frame.

3. One-Photon Parallel-Beam-Excitation and -Detection
Fluorescence Polarization Spectroscopy

In a traditional case of parallel-beam-excitation and -detection
polarized fluorescence spectroscopy of marcoscopically isotropic
samples (e.g., solutions, membrane vesicles suspension, or
solution of labeled macromolecules), the fluorophores are
excited by linearly polarized light (polarization versorêi) and
the emitted polarized fluorescence is detected at certain orienta-
tions of the analyzer (polarization versorêf), as indicated in
Scheme 1. The pulsed exciting light and the collected fluores-

Pem
(êf)(Ω) ∼ Ef

(0) . F(0) + Ef
(2) . F(2) )

1

3
+

2

3
∑

m)-2

2

C2,n(θf
(L), æf

(L))C /

2,n(θe
(L)(t), æe

(L)(t)) (8)

Iêi
,êf

(t) ) CPh(t)〈Pex
(êi)(Ω0)Pem

(êf)(Ω)〉 )

CPh(t)(1 + 2 ∑
m)-2

2

C /

2,m(θi
(L), æi

(L))〈C2,m(θa
(L)(0), æa

(L)(0))〉 +

2 ∑
m)-2

2

C2,n(θf
(L), æf

(L))〈C /

2,m(θe
(L)(t), æe

(L)(t))〉 +

4 ∑
m,n)-2

2

C /

2,m(θi
(L), æi

(L))C2,n(θf
(L), æf

(L)) ×

〈C2,m(θa
(L)(0), æa

(L)(0))C /

2,n(θe
(L)(t), æe

(L)(t))〉 (9)

Ŝiso[...] ) 1

8π2 ∫Ω′
R(Ω′)[...] dΩ′ (10)

Ŝiso[C2,n(θ
(L), æ(L))] )

∑
p

(∫Ω′
Dnp

(2)(Ω′) dΩ′)C2,p(θ
(L), æ(L)) ) 0 (11)

SCHEME 1

Ŝiso[C
/

2,m(θi
(L), æi

(L))C2,n(θf
(L), æf

(L))] )
C /

2,m(θi
(L)′, æi

(L)′)C2,n(θf
(L)′, æf

(L)′) )

∑
p,q

(∫Ω′
D(2)*

mp(Ω′)Dnq
(2)(Ω′)dΩ′)C /

2,p(θi
(L), æi

(L))C2,q(θf
(L), æf

(L)) )

1

5
δmn∑

p

C /

2,p(θi
(L), æi

(L))C2,p(θf
(L),æf

(L)) (12)

Iêi,êf
(t) ) C[Ph(t) +

4/5( ∑
p)-2

2

C /

2,p(θi
(L), æi

(L))C2,p(θf
(L), æf

(L)))W(t)Ph(t)] (13)

Iêiêf
(t) ) C(Ph(t) + 4/5P2(θif

(L))W(t)Ph(t)) (14)

P2(θif
(L)) ) ∑

p)-2

2

C /

2,p (θi
(L), æi

(L))C2,p(θf
(L), æf

(L)) (15)
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cence both are parallel beams of light in the laboratory space
and within the sample where the excitation and emission
processes take place.

The photoselected molecules exhibit a three-dimensional
(3D)-symmetric-cone-like angular distribution. The intensity of
the detected polarized fluorescence is given by eq 14, and it
does not depend on the angle between the directions of excitation
and detection.

By setting the analyzer atθif ) 0°, θif ) 90°, and at the
so-called magic angleθif ) θmag ) 54.7°, the expressions for
the corresponding components of polarized fluorescence are
given by the following equations according to eq 14.

From the first two polarized fluorescence components the well-
known expressions for the total fluorescence decayItot(t),
unpolarized fluorescence decayIunp(t), and emission anisotropy
r(t) decay can be evaluated, namely,

whereC is a new constant factor.
Assuming that Ph(t) andW(t) are multiexponential functions

of time, that is, eq 22,

where

(whereθae is the angle between the absorption and emission
dipole moments), eqs 19 and 21 become eqs 23 and 24,
respectively;

where ai and τF,i are the kinetic fluorescence decay param-
eters, andbj and τR,j are the emission anisotropy decay
parameters. Consequently,r(t) and Itot(t) are also multiexpo-
nential functions of time. It is important to stress here that
these properties of the total (or magic-angle-detected) fluores-
cence and emission anisotropy decays play a fundamental role
in a traditional fluorescence polarization spectroscopy with the
parallel beam of exciting light and parallel beam of collected
fluorescence. One has to remember, however, that in practice,
except for unfocused laser excitation, these conditions are

usually near-parallel rather than strictly parallel (i.e., the
excitation and detection cones are narrow enough, at least within
the medium containing the fluorophores, that for most prac-
tical purposes the convergence-divergence effects are negli-
gible).

4. One-Photon-Excitation Fluorescence Polarization
Spectroscopy at High-Aperture Excitation and Detection

In this section we consider a description of one-photon-
excitation fluorescence polarization experiments under the high-
aperture excitation and detection conditions, depicted in Scheme
2.

The pulsed parallel beam of exciting light passes through a
beam expander. The polarizer selects the desired direction of
polarization (êi) of the expanded exciting light that is then
focused by a lens onto the sample. The fluorescence emitted
from the sample is collected through an optical system composed
of an aperture and a lens. The analyzer selects the desired
direction of polarization (êf) of the parallel beam of fluorescence
light that, afterward, is focused by a second lens onto the
detector. Angular orientation of versorsêi andêf in the laboratory
frameXLYLZL are described by the polar angles (θi

(L), æi
(L)) and

(θf
(L), æf

(L)). Both angular orientations can be expressed in
terms of the polar angles of eˆi and êf in the coordinate frames
X0Y0Z0 in the excitation and detection channels (i.e., by (θi

(0),
æi

(0)} and (θf
(0), æf

(0))) and in terms of two sets of the Euler
angles (ΩLf0

(ex) and ΩLf0
(em)) defining the angular orientation of

both X0Y0Z0 frames with respect to the laboratory coordinate
frameXLYLZL.

In Scheme 2, the rays of the exciting beam of light, after
passing through the polarizer, possess uniform polarization (i.e.,
all versorsêi are mutually parallel in the laboratory space).
However, after being passed through a collecting lens (the rays
are being transformed by this lens from the laboratory space to
the focal space), versorsêi become appropriately distributed
around theZ0 axis at the focus, and the fluorophores are excited
by the photons of different polarization directions. In other
words, the photoselection does not proceed with one direction
of polarization of the exciting light, in contrast to the parallel-
beam-excitation condition, discussed in the previous section.
The same concerns are present for the detection channel, where,
in the focal space, the rays of the emitted fluorescence possess
differently oriented versorsêf, but after passing through the
collecting lens (they are being transformed from the focal space
to laboratory space) all rays become mutually parallel and all
possess the same orientation of versorsêf selected by the
analyzer. In other words, the uniform polarizationêf selected
in the parallel beam of fluorescence light in the laboratory space

I|(t) ) C(Ph(t) + 4/5W(t)Ph(t)) (16)

I⊥(t) ) C(Ph(t) - 2/5W(t)Ph(t)) (17)

Imag(t) ) CPh(t) (18)

Itot(t) ) I|(t) + 2I⊥(t) ) 3Imag(t) (19)

Iunp(t,) ) I|(t) + I⊥(t) ) C[Ph(t) + 1/5W(t)Ph(t)] (20)

r(t) )
I|(t) - I⊥(t)

Itot(t)
) 0.4W(t) (21)

Ph(t) ) ∑
i)1

N

ai exp(- t/τF,i) W(t) ) ∑
j)1

M

bj exp(- t/τR,j) (22)

∑
i)1

N

ai ) 1 and∑
j)1

M

bi ) P2(θae)

r(t) ) 0.4W(t) ) 0.4∑
j)1

M

bj exp(-t/τR,j) (23)

Itot(t) ) 3Imag(t) ) 3C∑
i)1

N

ai exp(-t/τF,i) (24)

SCHEME 2

8610 J. Phys. Chem. A, Vol. 111, No. 35, 2007 Fisz



corresponds to a distribution of differently oriented versorsêf

at the focus. Therefore, it is clear that the convergence-
divergence effects discussed here must be taken into account
when formulating a more accurate description of fluorescence
polarization experiments at the conditions indicated in Scheme
2.

To better elucidate the problem in question, let us con-
sider the situations depicted in Schemes 3 and 4, where parallel
beams of exciting light or collected fluorescence, both uni-
formly polarized in the laboratory space, are transformed by
a lens to/from the focal space, where the polarizations of
both beams are given by the corresponding angular distri-
butions.

According to Scheme 3, the ray of lightL0 propagating along
the optical axis possesses the same polarization directionê0 in
both spaces. This is in contrast to the rayL1 because its
polarization direction (versorê1) is differently oriented in both
spaces. In the laboratory spaceL1 is parallel to the optical axis,
andê1 is parallel toê0 and to theZ0 axis. In the focal space,L1

makes an angleσ with the optical axis, andê1 makes an angle
ω with the meridional planeΣ1 (i.e., ê1 is no longer parallel to
the Z0 axis at the focus).26,14

By considering several rays, one can figure out an ap-
proximate schematic visualization of the distributions of versors
êi and êf at the focus, which correspond to the same versors
parallelly oriented in the laboratory space. As shown in Scheme
4, in the focal space both distributions possess 3D-asymmetric-
cone-like shapes of an elliptical cross-section (aD2h symmetry),
in contrast to uniform (coaxial) distributions of the same versors
in the laboratory space.

It is clear, therefore, thatC2,p(θi
(L), æi

(L)) andC2,p(θf
(L), æf

(L))
in eq 13 must be expressed in terms of the corresponding

tensorial sets in the focal space, as we have discussed in ref 29,
that is,

where Dpq
(2)(Ω) and dpq

(2)(â) are the elements of Wigner and
reduced Wigner rotational matrices,31,32respectively. The terms
θ i

(0) and θ f
(0) are the angles between the versorsêi and êf and

the Z0 axes of theX0Y0Z0 coordinate frames in the excitation
and detection channels in the laboratory space, as indicated in
Scheme 2.

By employing the relationships in eqs 25 and 26, we obtain
from eq 13 a formula forIêiêf(t, F, ω, σ, ω′) describing the
intensity of polarized fluorescence originating from a single-
ray excitation and a single-ray detection. The fluorescence signal
registered by the detector is the integrated intensity contributed
to by all exciting and fluorescence rays propagating in the focal
space within the cones of half anglesF0 andσ0, correspondingly,
that is,

Finally, the formula describing the fluorescence intensity
detected has the form of eq 13, with the spherical harmonics
C2,p(θi

(L), æi
(L)) and C2,p(θf

(L), æf
(L)) given by eqs 28 and 29,

respectively.29

In the above expressions,

wheres ) 0, 1, 2, and whereRs(F0) andQs(σ0) are the second-
rank high-aperture excitation and detection transformation
coefficients, respectively, in spherical representation. They
transform the components of the second-rank excitation and
detection spherical tensors between the laboratory and focal
spaces, and

SCHEME 3

SCHEME 4

C2,p(θi
(L), æi

(L)) ) ∑
q)-2

2

D(2)*
pq (ΩLf0

(ex) ) ∑
s)-2

2

dqs
(2)(- π/2) × ∑

r)-2

2

D(2)*
sr

(-ω, -σ, ω)C2,r(π/2, θi
(0)) (25)

C2,p(θf
(L), æf

(L)) ) ∑
q)-2

2

D(2)*
pq (ΩLf0

(em) ) ∑
s)-2

2

dqs
(2)(- π/2) ×

∑
r)-2

2

Dsr
(2)* (- ω′, - σ, ω′)C2,r(π/2, θf

(0)) (26)

Iêiêf
(t, F0, σ0) ) ∫0

2π ∫0

F0 ∫0

2π ∫0

σ0 Iêiêf

(t, F, ω, σ, ω′)sin F dF dω sin σ dσ dω′/

(∫0

2π ∫0

F0
sin F dF dω ∫0

2π ∫0

σ0
sin σ dσ dω′) (27)

C2,p(θi
(L), æi

(L)) )

∑
q)-2

2

D(2)*
pq (ΩLf0

(ex) ) ∑
s)-2

2

Rs(F0)dqs
(2)(- π/2)C2,s(π/2, θi

(0)
) (28)

C2,p(θf
(L), æf

(L)) )

∑
q)-2

2

D(2)*
pq (ΩLf0

(em) ) ∑
s)-2

2

Qs(σ0)dqs
(2)(- π/2)C2,s(π/2, θf

(0)) (29)

Rs(F0) ) ∫0

F0 dpp
(2)(F)sin F dF/∫0

F0 sin F dF (30)

Qs(σ0) ) ∫0

σ0 dpp
(2)(σ)sin σ dσ/∫0

σ0 sin σ dσ (31)
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and

whereRs(F0) ) R-s(F0) andQs(σ0) ) Q-s(σ0).
Note that the zero-rank transformation coefficients,R0

(0)(F0)
and Q0

(0)(σ0), are proportional to the denominators in eqs 32
and 33, and their exact forms areR0

(0)(F0) ) 2π(1 - cosF0) and
Q0

(0)(σ0) ) 2π(1 - cosσ0).
In the small-aperture limit for excitation (i.e., whenF0 f 0)

and detection (i.e., whenσ0 f 0), we obtain eq 34,

and the relations given by eqs 27-29 automatically convert to
the corresponding expressions discussed in the previous section
for the parallel-beam excitation and detection experimental
conditions. It is noteworthy that for the parallel-beam excitation
and high-aperturedetection experimental conditions we get eq
35,

and for the opposed experimental case we get eq 36.

The dependence of the transformation coefficientsRp(F0) and
Qp(σ0) on the cone half-anglesF0 and σ0 is demonstrated in
Figure 1a.

The transformation coefficientsRp(F0) given by eqs 30 and
32 refer to an expanded parallel beam of exciting light that
possesses a homogeneous intensity in its cross-sections. How-
ever, in many experimental instances this assumption is not
valid, and the single-mode continuous or pulsed laser beams of
light exemplify such a situation. The light intensity inhomoge-
neity in the cross-section of a parallel beam of light is
automatically converted by an objective lens into an inhomo-
geneous radial distribution of the light intensity in the converg-
ing beam, and this, of course, may essentially modify the angular
distribution of fluorophores photoselected at the focus. A
Gaussian profile of the intensity distribution of a TEM00 pulsed
laser beam can be converted into a more homogeneous one,
very close to a rectangular shape (the so-called flat-top or hat-
top profiles). A typical beam-shaping telescope is the

specially designed Galilean telescope,33,34 which returns a
collimated beam of light of homogeneous intensity distribution
in its cross-section. Moreover, specially designed beam-shapers
can also be applied to the high-power and short-pulse laser
beams.

On the other hand, however, the transformation coefficients
Rp(F0), given by eq 32, can easily be modified to a Gaussian
profile of the intensity of a (pulsed) laser beam. The Gaussian
intensity profileG(r) can be approximated by eq 37.

Neglecting the aberration effect, the plane wavefront of a
collimated laser beam is converted by an objective lens into a
spherical wavefront, and hence, the sine conditionr ) f sin F
holds, wheref is the focal length. Consequently, the radial
intensity distributionG(F) in the focused beam can be ap-
proximated by eq 38,

where∆ is the half-width of the Gaussian profile. Finally, the
modified definition of Rp(F0), previously given by eq 30,
becomes eq 39.

R0(F0) ) 1/2(cosF0 - cos3 F0)/(1 - cosF0)

R1(F0) )

1/12(1+ 6 cosF0 - 3 cos2 F0 - 4 cos3 F0)/(1 - cosF0)

R2(F0) )

1/12(7- 3 cosF0 - 3 cos2 F0 - cos3 F0)/(1 - cosF0) (32)

Q0(σ0) ) 1/2(cosσ0 - cos3 σ0)/(1 - cosσ0)

Q1(σ0) )

1/12(1+ 6 cosσ0 - 3 cos2 σ0 - 4 cos3 σ0)/(1 - cosσ0)

Q2(σ0) )

1/12(7- 3 cosσ0 - 3 cos2 σ0 - cos3 σ0)/(1 - cosσ0) (33)

lim
F0f0

Rp(F0) ) 1 lim
σ0f0

Qp(σ0) ) 1 (p ) 0, 1, 2) (34)

lim
F0f0

Rp(F0) ) 1 Qp(σ0) < 1 (p ) 0, 1, 2) (35)

Rp(F0) < 1 lim
σ0f0

Qp(σ0) ) 1 (p ) 0, 1, 2) (36)

Figure 1. (a) Angular dependence ofRp(F0) andQp(σ0) for an uniform
intensity distribution profile; (b) angular dependence ofRp(F0) for a
Gaussian intensity profile (data obtained for∆ ) 5 mm and the focus
length f ) 5 mm).

G(r) ) A2 exp[-2r2/∆2] (37)

G(F) ) A2 exp[-2(f/∆)2 sin2 F] (38)

Rp(F0) ) [∫0

F0 G(F)dpp
(2)(F) sin F dF] /

[∫0

F0 G(F) sin F dF] (p ) 0, 1, 2) (39)
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It is noteworthy that the amplitude (A) plays no role in eq 39.
In Figure 1b we show the calculated transformation coefficients
Rp(F0) for ∆ ) 5 mm and for the focal lengthf ) 5 mm. The
results shown in Figure 1b demonstrate, quite clearly, that the
nonuniform distribution of the intensity in the cross-section of
a linearly polarized parallel beam of light, converted by an
objective lens into the nonuniform radial distribution of the
intensity in the focal space, may finally lead to a substantial
modification of the angular distribution of photoselected
molecules, as compared to the case when the intensity distribu-
tion profile is uniform (see Figure 1a).

5. Kinetic Fluorescence and Emission Anisotropy Decays
at High-Aperture Excitation and Detection

Let us consider the fluorescence polarization experiments that
can be performed according to the experimental arrangement
depicted in Scheme 5. The beams of exciting and fluorescence
light propagate in theXLYL plane of the laboratory frameXLYLZL

at anglesψex andψem. Desired polarizations of exciting light
(angleθi

(0)) and detected fluorescence (angleθf
(0)) are selected

in the X0Y0Z0 frames in the excitation and detection channels,
as shown in Scheme 5.

At these experimental conditionsΩLf0
(ex) ) (ψex, 0, 0) and

ΩLf0
(em) ) (ψem, 0, 0), and consequently, eqs 28 and 29 are

replaced by eqs 40 and 41, respectively.

Consequently, the componentsI|(t, F0, σ0, ∆ψ) (i.e., whenθ i
(0)

) 0° andθ f
(0) ) 0°) andI⊥ (t, F0, σ0, ∆ψ) (i.e., whenθ i

(0) ) 0°
andθ f

(0) ) 90°), obtained from eq 13, take the forms shown in
eqs 42 and 43, respectively,

where∆ψ ) ψem - ψex is the angle between the direction of
excitation and detection.

From the above expressions, we obtain eqs 44 and 45.

For the parallel-beam excitation caseRp(F0) f 1, and eqs 42
and 43 are reduced to eqs 46 and 47, respectively.

Consequently, the total fluorescence decayItot(t, σ0) and
emission anisotropy decayr(t, σ0) become eqs 48 and 49,
respectively.

It is important to emphasize here that the last two relations do
not depend on∆ψ. This is nothing surprising because, in this
case, the fluorophores are excited by uniform (coaxial) distribu-
tion of versorsêi (i.e., all of these versors are parallel to theZL

axis, and the angular distribution of excited molecules is
cylindrically symmetric).

Additionally, for the parallel-beam detection case,Qp(σ0) f
1, and the above four expressions further reduce to the ones
given by eqs 16, 17, 19, and 21, according to what one might
have expected.

The expressions derived in this section reflect a very particular
character of fluorescence polarization spectroscopy at high-
aperture-excitation and -detection experimental conditions, as
compared to coresponding traditional expressions discussed in
Section 2. The time evolution of polarized components in eqs
42 and 43 depends on the angle between the directions of
excitation and detection of the fluorescence signal. This property
is automatically reflected in the evolution of total fluorescence
(eq 44) and emission anisotropy (eq 45) decays. Furthermore,
the evolution of polarized fluorescence decays (eqs 42, 43, 46,
and 47) are strongly dependent on the widths of the excitation
and detection cones (i.e., the magnitude of the contribution of
the kinetic-dynamic termW(t)Ph(t) to the evolution of these
polarized fluorescence components depends very strongly on

SCHEME 5

C2,p(θi
(L), æi

(L)) ) ∑
s)-2

2

D(2)*
ps (ψex, -π/2, 0)Rs(F0)C2,s(π/2, θi

(0))

(40)

C/

2,p(θf
(L), æf

(L)) ) ∑
s)-2

2

Dps
(2)(ψem, -π/2, 0)Qs(σ0)C

/

2,s(π/2, θf
(0))

(41)

I|(t, F0, σ0, ∆ψ) ) C{Ph(t) +

1/20[6 sin2 ∆ψ(R0(F0)Q2(σ0) + R2(F0)Q0(σ0)) +
3 cos 2∆ψ(R2(F0)Q2(σ0) + R0(F0)Q0(σ0)) +

9R2(F0)Q2(σ0) + R0(F0)Q0(σ0)]W(t)Ph(t)} (42)

I⊥(t, F0, σ0, ∆ψ) ) C{Ph(t) -

1/20[6 sin2 ∆ψ(R0(F0)Q2(σ0) - R2(F0)Q0(σ0)) +
3 cos 2∆ψ(R2(F0)Q2(σ0) - R0(F0)Q0(σ0)) +

9R2(F0)Q2(σ0) - R0(F0)Q0(σ0)]W(t)Ph(t)} (43)

Itot(t, F0, σ0, ∆ψ) ) I|(t, F0, σ0, ∆ψ) + 2I⊥(t, F0, σ0, ∆ψ) )

C{3Ph(t) + 1/20[6 sin2 ∆ψ(3R2(F0)Q0(σ0) -
R0(F0)Q2(σ0)) + 3 cos 2∆ψ(3R0(F0)Q0(σ0) -

R2(F0)Q2(σ0)) - 9R2(F0)Q2(σ0) + 3R0(F0)Q0(σ0)]W(t)Ph(t)}
(44)

r(t, F0, σ0, ∆ψ) )
I|(t, F0, σ0, ∆ψ) - I⊥(t, F0, σ0, ∆ψ)

I|(t, F0, σ0, ∆ψ) + 2I⊥(t, F0, σ0, ∆ψ)
) C

{1/10[6 sin2 ∆ψR0(F0)Q2(σ0) + 3 cos 2∆ψR2(F0)Q2(σ0) +
9R2(F0)Q2(σ0)]W(t)Ph(t)}/{Itot(t, F0, σ0) (45)

I|(t, σ0) ) C[Ph(t) + 1/5(Q0(σ0) + 3Q2(σ0))W(t)Ph(t)]
(46)

I⊥(t, σ0) ) C[Ph(t) - 1/5(- Q0(σ0) + 3Q2(σ0))W(t)Ph(t)]
(47)

Itot(t, σ0) ) 3C[Ph(t) + 1/5(Q0(σ0) - Q2(σ0))W(t)Ph(t)]
(48)

r(t, σ0) ) 0.4
Q0(σ0)W(t)

1 + 1/5(Q0(σ0) - Q2(σ0))W(t)
(49)
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the cone half-anglesF0 and σ0). Consequently, the total
fluorescence decays (eqs 44 and 48) do not solely represent the
kinetic fluorescence decays because both decays are contributed
to by the dynamic evolution of the photoselected fluorophores
(i.e., by the rotational diffusion correlation functionW(t)). This
contribution is strongly modulated by the widths of the excitation
and detection cones. This problem was encountered earlier by
Axelrod27 for a parallel-beam excitation and high-aperture
detection experimental case, which is described by eqs 48 and
49.

In the case of the emission anisotropy, at the high-aperture
excitation and detection conditions (see eq 45) or at parallel-
beam excitation and high-aperture detection conditions (see eq
49), its time evolution is described by a nonexponential function
of time because the denominators in eqs 45 and 49 contain the
term proportional toW(t). Moreover, the initial values of
emission anisotropy (r(t ) 0, σ0)) are very strongly dependent
on the values of the coefficientsRp(F0) andQp(σ0). It is clear,
therefore, that the data obtained at both experimental conditions
cannot be analyzed in terms of the emission anisotropy decay
described by eq 23.

The case of parallel-beam excitation and high-aperture
detection, discussed in this section (see eqs 48 and 49), is
equivalent with the problems considered by Dragsten13 and
Axelrod,14 and both described in the Cartesian coordinate
representation. We want to demonstrate that the results of the
treatments discussed in refs 13 and 14 are entirely equivalent
with the results that can be obtained from our approach based
on the spherical coordinate representation, introduced in ref 29
and further discussed in this article. Indeed, the components of
polarized fluorescenceI|(t, σ0) and I⊥(t, σ0) detected in the
laboratory space, when related to the components of polarized
fluorescence in the focal space, take the forms shown in eqs 50
and 51,

where I |
(0)(t) and I ⊥

(0)(t) are the parallel and perpendicular
components of fluorescence in theX0Y0Z0 coordinate frame at
the focus, and where the exciting beam of light is polarized
along theZ0 axis. The termsk′a, k′b, andk′c are the normalized
transformation coefficients obtained by Dragsten,13 and they are
equivalent with the coefficients obtained by Axelrod,14 ka, kb,
andkc, after normalyzing them.29 The normalized coefficients
hold the closure property shown in eq 52,29

which means that only two of these coefficients are necessary
to describe the transformation between Cartesian components
of polarized fluorescence from the focal space to laboratory
space. Also, in the spherical representation only two transforma-
tion coefficients occur in all expressions derived (i.e.,R0(F0)
andR2(F0), see the final results obtained in previous sections).
The coefficientR1(F0), which is the odd moment of the second-
rank spherical representation of the transformation in question,
disappears due to theD2h symmetry of the distribution of versors
êf at the focus.

Polarized fluorescence componentsI |
(0)(t) and I ⊥

(0)(t), in eqs
50 and 51, relate to the fluorescence components at the focus,
and they are given by eqs 16 and 17, respectively. Therefore,
eqs 50 and 51 can be rewritten as eqs 53 and 54, respectively.

Taking into account the following relationships between the
transformation coefficients in both representations (eq 55)29

and the closure property (eq 52), we immediately obtain from
eqs 53 and 54 the coresponding formulas given by eqs 46 and
47.

6. Confocal Fluorescence Polarization Microscopy

The results obtained in previous sections can directly be
adapted to the description of confocal fluorescence polarization
microscopy. Let us assume that (as shown in Scheme 6) the
pulsed-parallel beam of polarized laser light is reflected by a
dichroic mirror and directed toward the objective and then it is
focused on the sample. The termR0 is the half-angle of the
excitation and detection cone. The emitted fluorescence is
collected by the same objective, and the parallel beam of
fluorescence light passes (in the laboratory space) through an
analyzer. By rotating the analyzer, a desired polarization of
detected fluorescence can be selected (see the top view, as
indicated in Scheme 6).

At the experimental conditions depicted in Scheme 6,∆ψ )
ψem - ψex ) 0, F0 ) σ0 ) R0, and relations 42 and 43 lead to
eqs 56 and 57, respectively,

where the distinguished direction in the laboratory space is the
polarization of the exciting laser beam, which is parallel to the
Z0 axis of theX0Y0Z0 coordinate frame.

Therefore, the total fluorescenceItot(t, R0) and emission
anisotropyr(t, R0) decays, obtained directly from eqs 44 and
45 or calculated from eqs 56 and 57, take the forms shown in
eqs 58 and 59.

The detected intensity of polarized fluorescence decay at an
arbitrary angle of polarization directionθf

(0) can be defined by
eq 60.

However, an equivalent formula can be obtained directly
from eq 13, with the spherical harmonicsC2,p(θ i

(L), æi
(L)) and

C2,p(θf
(L), æf

(L)) adapted to the case depicted in Scheme 6. By

I|(t, σ0) ) k′aI⊥
(0)(t) + k′bI⊥

(0)(t) + k′cI|
(0)(t) (50)

I⊥ (t, σ0) ) k′aI⊥
(0)(t) + k′cI⊥

(0)(t) + k′bI|
(0)(t) (51)

k′a + k′b + k′c ) 1 (52)

I|(t, σ0) ) C[Ph(t) + 4/5(1/2(k′c - k′a) +
1/2(k′c - k′b))W(t)Ph(t)] (53)

I⊥(t, σ0) ) C[Ph(t) - 2/5((k′a - k′b) +
(k′c - k′b))W(t)Ph(t)] (54)

k′c - k′a ) 1/2(Q0(σ0) + Q2(σ0))

k′b - k′a ) 1/2(Q0(σ0) - Q2(σ0)) (55)

I|(t, R0) ) C[Ph(t) + 1/5(3R2(R0)Q2(R0) +
R0(R0)Q0(R0))W(t)Ph(t)] (56)

I⊥(t, R0) ) C[Ph(t) - 1/5(3R2(R0)Q2(R0) -
R0(R0)Q0(R0))W(t)Ph(t)] (57)

Itot(t, R0) ) 3C[Ph(t) + 1/5(R0(R0)Q0(R0) -
R2(R0)Q2(R0))W(t)Ph(t)] (58)

r(t, R0) ) 0.4
R2(R0)Q2(R0)W(t)

1 + 1/5(R0(R0)Q0(R0) - R2(R0)Q2(R0))W(t)
(59)

I(t, R0, θf
(0)) ) cos2 θf

(0)I|(t, R0) + sin 2 θf
(0)I⊥(t, R0) (60)

8614 J. Phys. Chem. A, Vol. 111, No. 35, 2007 Fisz



assuming, in eqs 25 and 26, that (θ i
(L), æ i

(L)) ) (0, π/2), (θf
(L),

æf
(L)) ) (θf

(0), π/2), andΩLf0
(ex) ) ΩLf0

(em) ) (0, 0, 0), we obtain
eqs 61 and 62,

and hence, finally, eq 13 becomes eq 63.

By setting the analyzer atθf
(0) ) 0° andθf

(0) ) 90°, we obtain
immediately from eqs 60 and 63 the expressions for polarized
fluorescence components given by eqs 56 and 57, namely,I(t,
R0, 0°) ≡ I|(t, R0) andI(t, R0, 90°) ≡ I⊥(t, R0). Note that at the
so-called magic angle (θf

(0) ) 54.7°), the term in eq 63
proportional toP2(θf

(0)), disappears becauseP2(54.7°) ) 0. It is
important to note that the final form of eq 63 (Imag(t, R0)) is
contributed to by the kinetic-dynamic termW(t)Ph(t), which
is in contrast to standard fluorescence spectroscopy (see eq 18).

If the intensity distribution in the cross-section of the exciting
laser beam can be assumed as being homogeneous (e.g., it has
been homogenized by a beam-shaping telescope), then the
transformation coefficients ofRp(R0) andQp(R0) in the above
relations are identical, and they are calculated according to eqs
32 or 33. However, if the intensity distribution is inhomogeneous
and it can be approximated by a Gaussian profile, then
thecoefficients ofRp(R0) are calculated from eq 39, whereas
Qp(R0) is evaluated from eq 33.

Equations 58 and 59 display the properties of fluorescence
polarization experiments at high-aperture excitation and detec-
tion conditions, discussed in the previous section. The total
fluorescence decay does not depend solely on the kinetic
fluorescence decay Ph(t) because of the contribution of the
second term proportional to the product Ph(t)W(t). The contribu-
tion of this term depends on the value of the cone half-angle
(R0). Emission anisotropy is a nonexponential function of time
because the denominator in eq 59 contains the term proportional
toW(t). Furthermore, the initial value of emission anisotropy
r(t ) 0, R0) very strongly depends on the value ofR0.

To justify the practical consequences of the above-mentioned
properties ofItot(t, R0) andr(t, R0), let us assume that Ph(t) and
W(t) are monoexponential functions of time with the fluores-
cence lifetimeτF ) 3 ns and the rotational diffusion timeτR )
0.7 ns. The total fluorescence and emission anisotropy decays
obtained from the measurements performed at the parallel-beam
excitation and detection conditions will exhibit monoexponential
time dependencies, with the corresponding decay timesτF and
τR, respectively. In the case of similar experiments at the
combined high-aperture excitation and detection conditions the
situation is different. The total fluorescence decay will be
biexponential, with a long decay timeτF ) 3 ns and a short
decay time

describing the decay time of the product functionW(t)Ph(t),
according to eq 58. Therefore, when analyzing such experi-
mental data according to eq 24, one could come to an
inappropriate conclusion that photophysical properties of fluo-
rophores are described by two fluorescence lifetimes,τF,1 ) 3
ns andτF,2 ) 0.57 ns. In the case of emission anisotropy, the
application of eq 23 would lead to a conclusion that the
evolution ofr(t) is a bi- or triexponential. Furthermore, a value
of r(0) lower than 0.4 would be interpreted as resulting from
the nonzero angle between the absorption and emission dipole
moments.

In Figure 2a we show the plots ofItot(t, R0) calculated for
Ph(t) ) exp(- t/τF) andW(t) ) exp(- t/τR) with τF ) 3 ns and
τR ) 0.7 ns, forR0 ) 0, 20, 40 and 60°. The constant factorC
in Itot(t, R0) was set to unity. The total fluorescence decay atR0

) 0° is monoexponential, but for wider cone half-angles the
decays become biexponential.

The changes of the contribution of the dynamical evolution
of excited fluorophores to the detected intensityItot(t, R0), with
the change ofR0, can be well understood by considering the
angular dependence of the coefficientctot(R0),

which is the proportionality coefficient of the contribution of
the kinetic-dynamic term Ph(t)W(t) in eq 58. According to
Figure 2b, the absolute values ofctot(R0) rise very fast with the
increasing values ofR0. At R0 = 62°, the contribution of Ph-
(t)W(t) to Itot(t, R0) is the most pronounced, and its absolute
contribution is about 9% (i.e.,|ctot(62°)| = 0.09).

Taking into account the plot ofctot(R0) shown in Figure 2b,
we may conclude that, forR0 values not larger than about 15-
20°, the total fluorescence decay (eq 58) can be reduced, to a
very good approximation, to the first term (i.e., to Ph(t)) because
the contribution of the second term is less that 3% (i.e., the
absolute values ofctot(R0) are lower than 0.03). At such
conditions the experimentally detected decays ofItot(t, R0) can
be analyzed according to eq 24. For wider excitation-detection
cones, the participation of the kinetic-dynamic term Ph(t)W(t)
in the time evolution ofItot(t, R0) cannot be assumed to be
negligible, thereby taking into account only the values ofctot-
(R0). Also important is the mutual relation between the decay
timesτF andτR; three particular cases have to be distinguished,
namelyτR . τF, τR = τF, andτR , τF. In the last case, the
rotational dynamics is completed at the very beginning of the
kinetic fluorescence decay, and hence, effectively, the fluores-

SCHEME 6

C2,p(θi
(L), æi

(L)) ) ∑
s)-2

2

dsp
(2)(π/2)Rs(F0)C2,s(π/2, θi

(0)) (61)

C/

2,p(θf
(L), æf

(L)) ) ∑
s)-2

2

dsp
(2)(π/2)Qs(σ0)C

/

2,p(π/2, θf
(0)) (62)

I(t, R0, θf
(0)) ) C[Ph(t) + 1/5(R0(R0)Q0(R0) -

R2(R0)Q2(R0) + 4P2(θf
(0))R2(R0)Q2(R0))W(t)Ph(t)] (63)

τ )
τFτR

τF + τR
= 0.57 ns (64)

ctot(R0) ) 1
5
(R0(R0)Q0(R0) - R2(R0)Q2(R0)) (65)
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cence signal detected at arbitrary angleR0 will solely represent
the kinetic decay of fluorescence.

In Figure 3a we show the calculated decays of the emission
anisotropyr(t, R0), which is a nonexponential function of time,
and its initial values are strongly dependent on the values of
R0. For R0 values lower than 15-20°, the decay of emission
anisotropy becomes a multiexponential function of time because
at such conditions the denominator in eq 59 does not contain
the term proportional toW(t) (i.e.,ctot(R0) takes negligible values
at such conditions, according to Figure 2b). However, the
variation of the initial values of the emission anisotropyr(t )
0, R0) on the change ofR0, calculated from eq 59 with the
assumption thatW(t ) 0) ) 1, that is, eq 66,

shown in Figure 3b, indicates that a more precise recovery of
the initial values of the emission anisotropy requiresR0 to be
not higher than 10-15°.

It is worthy to consider the decays of parallel and perpen-
dicular fluorescence components, given by eqs 56 and 57. The
plots of I|(t, R0) and I⊥(t, R0) for R0 ) 0, 20, 40, and 60°,
obtained for Ph(t) ) exp(-t/3 ns) andW(t) ) exp(-t/0.5 ns),
are shown in Figures 4a and c. The angular dependences of the
coefficientsc|(R0) andc⊥(R0), which define the contribution of

the product function Ph(t)W(t) to both polarized components
of fluorescence, that is, eqs 67 and 68,

are shown in Figures 4, panels b and d, respectively.
As is clearly shown in Figure 4 for the low aperture

excitation-detection conditions (i.e., whenR0 does not exceed
a value of 10-15°), both decays correspond to the ones given
by eqs 16 and 17 because at such conditionsc|(R0) = 4/5 and
c⊥(R0) = 2/5. Note that this rigoristic limitation for theR0 values
is imposed mainly by the parallel component of fluorescence
and by the coefficientc|(R0), in particular.

Very interesting is the case of theY0Z0-plane-unpolarized
fluorescence decay, defined in eq 69,

whereC is a new constant factor. Also in this case,Iunp(t, R0)
contains a clear contribution of the dynamic evolution of
photoselected fluorophores. For the paralle beam excitation and
detection, the above formula becomes identical with eq 20. In

Figure 2. (a) Total fluorescenceI tot(t) decays forR0 ) 0°(s), R0 )
20° (- - -), R0 ) 40° (- ‚ - ‚), and R0 ) 60° ( - ‚ ‚ - ‚ ‚); (b) the
contribution of the dynamic evolution of excited-state fluorophores to
detected decays of the total fluorescenceI tot(t, R0) as a function ofR0.

r(t ) 0, R0) ) 0.4
R2(R0)Q2(R0)

1 + 1/5(R0(R0)Q0(R0) - R2(R0)Q2(R0))
(66)

Figure 3. (a) Emission anisotropyr(t, R0) decays forR0 ) 0° (s), R0

) 20° (- - -), R0 ) 40° (- ‚ - ‚), and R0 ) 60° (- ‚ ‚ - ‚ ‚); (b) the
dependence of initial values of emission anisotropyr(t ) 0, R0) on R0.
Results obtained for Ph(t) ) exp(-t/3 ns) andW(t) ) exp(-t/0.7 ns).

c|(R0) ) 1/5(3R2(R0)Q2(R0) + R0(R0)Q0(R0)) (67)

c⊥(R0) ) 1/5(3R2(R0)Q2(R0) - R0(R0)Q0(R0)) (68)

Iunp(t, R0) ) I|(t, R0) + I⊥(t, R0) )

C[Ph(t) + 1
5
R0(R0)Q0(R0)W(t)Ph(t)] (69)
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Figure 5a we show the time-dependent plots ofIunp(t, R0) for
R0 ) 0, 20, 45, and 70°, which demonstrate a clear modification
of the time course ofIunp(t, R0) with a change of the excitation-
detection cone width. It is noteworthy thatIunp(t, 70°) is identical
with the Itot(t, 0°) shown in Figure 2a. Figure 5b displays the
angular dependence of eq 70,

which is the proportionality coefficient of the contribution of
the kinetic-dynamic term Ph(t)W(t) in eq 69.

A main conclusion that can be drawn from Figure 5b is that,
for R0 values greater than about 65°, the contribution of the
term proportional to Ph(t)W(t) starts to be negligible because
the values ofcunp(R0) tend to zero at such wide excitation-
detection cones. Hence, the unpolarized fluorescence decay
calculated from two polarized decaysI|,VHA(t) and I⊥,VHA(t),
detected separately at very high aperture (VHA), that is, eq 71,

represents, to a very good approximation, the kinetic fluo-
rescence decay, solely. Therefore,Iunp,VHA(t) has the same
physical meaning as the total fluorescence decay (Itot(t)) detected
in the traditional fluorescence spectroscopy with parallel beams
of exciting and detected light, and it can be analyzed according
to eq 24. In other words,Iunp,VHA(t) detected in the laboratory

Figure 4. Angular dependence of (a)I|(t, R0) and (c) I⊥ (t, R0) for
R0 ) 0° (s), R0 ) 20° (- - -), R0 ) 40° (- ‚ - ‚), and R0 ) 60°
(- ‚ ‚ - ‚ ‚), with the assumption thatC ) 1; angular dependence of (b)
c|(R0) and (d)c⊥(R0).

Figure 5. (a) The decays ofIunp(t, R0) for R0 ) 0° (s), R0 ) 20°
(- - -), R0 ) 45° (- ‚ - ‚), andR0 ) 70° (- ‚ ‚ - ‚ ‚), with the assumption
that C ) 1; (b) Angular dependence ofcunp(R0).

cunp(R0) ) 1
5
R0(R0)Q0(R0) (70)

Iunp,VHA(t) ) I|,VHA(t) + GI⊥,VHA(t) ∼ Ph(t) (71)
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space represents a fluorescence signal that can be understood
as an integrated intensity over all angular orientations of the
fluorophores emitting fluorescence at the focus, or equivalently,
as an overall intensity given byIX0 + IY0 + IZ0. At such
conditions, the microscope objective behaves like an “integrating
sphere”.

The expressions forI|(t, R0) and I⊥(t, R0) can be derived by
making use of the final results of the theory of electromagnetic
field distribution in the region of focus by Richards and Wolf26

and the results of the same theory developed by Yoshida and
Asakura28 for the case of the coherent collimated Gaussian
beams of light focused by an objective lens. The Cartesian
components of the electric field at the focal plane, along the
three axes of theX0Y0Z0 coordinate frame, are given by eqs
72-74,26-28

where the amplitude in common has been dropped, and where
I0-I2 are defined by eqs 75-77.

J0, J1, andJ2 are the Bessel functions of the first rank, andr
andφ are the coordinates of any point in the focal plane. The
term R0 is the excitation-detection cone half-angle, and∆ is
the half-width of the Gaussian intensity profile.

The fractional contribution of total intensity of the focused
exciting light, polarized along the axes of the frameX0Y0Z0 at
the focus, can be defined as eqs 78-80.

Hence,fx(R0) + fy(R0) + fz(R0) ) 1. The termse′i(R0) (i )
x,y,z) are the integrated values ofei(R0) over all r andφ. It is
important to emphasize here that in the above formulas we have
limited the integration solely to the focal plane. In more accurate
considertions, this integration should be performed over all
points of the region of focus that is the source of fluorescence
detected through the pinhole. The intensities of polarized
fluorescence emitted at the focus, and detected through a high
aperture in the laboratory space, can be described as the
corresponding linear combinations of the three fluorescence
signals excited by the light polarized along the axes of the
X0Y0Z0 frame, namely, eqs 81 and 82,

where the constituent intensitiesIi,|(t, R0) and Ii,⊥ (t, R0) (i )
x,y,z) can be obtained from eqs 42 and 43 with the assumption
that Rp(R0) f 1 and where

Finally we obtain the following expressions (eqs 86 and 87),

where

Note that fx(R0) can be replaced byfx(R0) ) 1 - fy(R0) -
fz(R0).

If the Gaussian intensity distribution of a (pulsed) laser beam
is converted by a beam-shaping telescope into a rectangular
profile and if the intensity distribution profile of exciting light,
entering the microscope objective, can be assumed to be
uniform, the term exp(-(f/∆)2 sin2 F) in eqs 75-77 becomes
replaced by unity.

The expressions derived forI|(t, R0) and I⊥(t, R0) exhibit
exactly the same forms as the ones given by eqs 56 and 57.
The only difference between both pairs of equations is that they
differ in the high-aperture excitation coefficients, which are
defined differently. Both pairs of equations can be written in
an unified form, namely, eqs 89 and 90,

wherea(R0) and b(R0) represent appropriate products of the
high-aperture excitation and detection coefficients that occur
in both descriptions of the confocal fluorescence microscopy.
They can be calculated from the corresponding equations
discussed in this article. They can also be determined experi-
mentally by employing the calibration method, discussed in the
next section.

7. Calibration Method

Equation 13 represents a general, symmetry adapted descrip-
tion of the time-resolved fluorescence polarization experiments
on macroscopically isotropic samples (e.g., solutions, labeled
macromolecules, and membrane vesicles) at arbitrary experi-

ex(r, φ, R0) ∼ 2I1(r) cosφ (72)

ey(r, φ, R0) ∼ - iI2(r) sin 2φ (73)

ez(r, φ, R0) ∼ - i(I0(r) + I2(r) cos 2φ) (74)

I0(r, R0) ) ∫0

R0 xcosFsin F(1 + cosF) exp(-

(f/∆)2sin2 F)J0(kr sin F) dF (75)

I1(r, R0) ) ∫0

R0 xcosFsin2
φ exp(-

(f/∆)2 sin2 F)J1(kr sin F) dF (76)

I2(r, R0) ) ∫0

R0 xcosF sinφ(1 - cosF) exp(-

(f/∆)2 sin2 F)J2(kr sin F) dF (77)

fx(R0) ) |e′x(R0)|2/ ∑
i)x,y,z

|e′i(R0)|2 (78)

fy(R0) ) |e′y(R0)|/ ∑
i)x,y,z

|e′i(R0)|2 (79)

fz(R0) ) |e′z(R0)|2/ ∑
i)x,y,z

|e′i(R0)|2 (80)

I|(t,R0) ) fx(R0)Ix,|(t, R0) + fy(R0)Iy,|(t, R0) + fz(R0)Iz,|(t, R0)
(81)

I⊥(t, R0) ) fx(R0)Ix,⊥ (t, R0) + fy(R0)Iy,⊥ (t, R0) +
fz(R0)Iz,⊥ (t, R0) (82)

Ix,|(t, R0) ) Ix,⊥(t, R0) ) C[Ph(t) - 2/5Q0(R0)W(t)Ph(t)]
(83)

Iy,|(t, R0) ) Iz,⊥(t, R0) ) C[Ph(t) - 1/5(- Q0(R0) +
3Q2(R0))W(t)Ph(t)] (84)

Iz,|(t, R0) ) Iy,⊥(t, R0) ) C[Ph(t) + 1/5(Q0(R0) +
3Q2(R0))W(t)Ph(t)] (85)

I|(t, R0) ) C[Ph(t) + 1/5(3A(R0)Q2(R0) +
B(R0)Q0(R0))W(t)Ph(t)] (86)

I⊥(t, R0) ) C[Ph(t) - 1/5(3A(R0)Q2(R0) -
B(R0)Q0(R0))W(t)Ph(t)] (87)

A(R0) ) fz(R0) - fy(R0), B(R0) ) fz(R0) + fy(R0) - 2fx(R0)
(88)

I|(t, R0) ) C[Ph(t) + 1/5(3a(R0) + b(R0))W(t)Ph(t)]
(89)

I⊥(t, R0) ) C[Ph(t) - 1/5(3a(R0) - b(R0))W(t)Ph(t)]
(90)
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mental conditions (e.g., different adaptations of the arrangement
depicted in Scheme 2). It can be rewritten in the following form
(eq 91),

where C and K ) 4/5 ∑
p)-2

2
C2,p

/ (θi
(L),æi

(L))C2,p(θf
(L),æf

(L)) are the

constant factors at fixed experimental conditions, and{p} is
the set of all parameters defining the conditions of a particular
experiment. For the experimental arrangement shown in Scheme
5, {p} ) {θ i

(0), θf
(0), ψex, ψem, F0, σ0}, and in the case of a

confocal microscope (Scheme 6),{p} ) {θ f
(0), R0}. FactorC

depends on the intensity of the exciting light, on the intensities
of absorption and emission bands at certainλex andλem, and on
the sensitivity of the detection channel to the detected polariza-
tion direction of fluorescence. TheK term depends on the
configuration of the experimental arrangement (e.g., on the
polarization directions selected by the polarizer and analyzer),
whereas it does not depend on the spectroscopic properties of
the fluorophores. It is important to emphasize that all expressions
for polarized fluorescence decays, derived in the previous
sections, have the form of eq 91.

According to eq 91,I({p}, t) can be treated as the linear
combination of the two time-dependend basis functions Ph(t)
andW(t)Ph(t), namely eq 92,

whereγ1 ) C andγ2 ) CK are the scalling factors, describing
the degree of the contribution of both basis functions toI({p},
t) in a given experiment. Any linear combination of the
intensitiesI({p}, t) has, finally, the form of eq 92. Hence, the
effects of the experimental artifacts (e.g., reflection of the
fluorescence light at the objective lens or aberration effects)
will be accumulated in the scaling factors, and they are
compensated for by the calibration method discussed below.

Equations 91 and 92 contain two sets of unknown parameters
(i.e., two constants) and the decay parameters of Ph(t) andW(t).
If one of these two sets of parameters is known, the second
one can be recovered from the data analysis. Because eq 92
contains two time-dependent basis functions, at least two
polarized fluorescence decays, with possibly most different
contributions of both basis functions, must be collected and
subjected to simultaneous (global) analysis.

Let us assume that the decay parameters ofPhc(t) andWc(t)
(see eq 22), for an arbitrary fluorophore in a solution phase,
have been determined from the standard time-resolved fluores-
cence polarization experiment. Hence, theδ-pulse-excitation
forms of Phc(t) and Wc(t) are known. Next, we collect two
distinct polarized fluorescence decays for the same sample on
the experimental arrangement (an instrument) that we want to
calibrate. It does not matter whether we consider the experi-
mental arrangement depicted in Schemes 5 or 6 or if we consider
a much more complicated one. It also does not matter which of
the angles (i.e.,θ i

(0), θf
(0), ψex, or ψem) has been modified when

changing the experimental conditions in Scheme 5 in order to
collect the second (distinct) decay. The two detected, distinct
polarized fluorescence decays are described by eqs 93 and 94.

Because theδ-pulse-excitation forms of Phc(t) and Wc(t) are
known, two pairs of scalling parameters (γc,1, γc,2 andγc,1′ , γc,2′ )
can be recovered by means of a multiple linear regression
method applied independently to each of the above equations.
Hence, the values of the constant factorsCc,1, Kc,1 andCc,2, Kc,2

can be calculated. The recovered values ofKc,1 andKc,2 can be
treated as the calibration parameters in the analysis of two
polarized fluorescence decays detected at the same experimental
conditions as in the former case, for another sample with the
same or another fluorophore, that is, eqs 95 and 96,

where the decay parameters of Ph(t) andW(t) and the constant
factors Cs,1 and Cs,2 have to be recovered from the global
analysis of the data.

If the excitation conditions in both measurements of polarized
fluorescence decays, for both sample, are identical and if the
experimental conditions have been changed (to collect two
distinct decays) by setting another orientation of the analyzer,
then the number of fitted parameters in the analysis of the data
obtained for the sample studied can be reduced. Indeed, in such
casesCc,1 andCc,2 differ solely by different sensitivity of the
detection channel on the polarization direction of fluorescence
detected (the so-called G-factor problem; i.e.,G ) Cc,2/Cc,1).
Consequently,Cs,2 in eq 96 becomes replaced byGCs,1; hence,
one constant factor has been eliminated from the list of the fitted
parameters. Finally, the total number of parameters to be fitted
in eqs 95 and 96 is the same as in the standard fluorescence
polarization experiments.

The calibration method discussed here is general, and it
applies to all one-photon-excitation fluorescence polarization
experiments on macroscopically isotropic samples. A funda-
mental advantage of this method is that it eliminates the
necessity of derivation of the explicit expressions for polarized
fluorescence decays, corresponding to a particular experimental
case of interest. In the case of confocal fluorescence microscopy,
the comparison of eqs 89 and 90 with eqs 95 and 96 leads to
the following relationships (eq 97),

which enable one to experimentally compare and verify both
descriptions of the fluorescence microscopy discussed in this
article. Futhermore, for the parallel-beam excitation and high-
aperture detection experimental conditions,a(R0) ) 3Q2(R0) and
b(R0) ) Q0(R0); hence, the calibration method enables one to
verify the optical properties of any microscope objective. Note
that the expressions forQ0(R0) andQ2(R0) have been derived
for an ideal objective lens, for which such effects as the
reflection of fluorescence light and chromatic and spherical
aberration do not occur.

8. Discussion

The theory outlined in this article may find interesting
applications in many problems important from the experimental
point of view. Equations 42-45 (Section 5), simplified to the
perpendicular excitation-detection experimental configuration
(i.e., when∆ψ ) 90°), can be applied in the analysis of high-
aperture-excitation and/or -detection fluorescence polarization
studies of the membrane vesicles suspensions, which are treated
as the models of biological membranes. The objective lenses

I({p}, t) ) C[Ph(t) + KW(t)Ph(t)] (91)

I({p}, t) ) γ1Ph(t) + γ2W(t)Ph(t) (92)

Ic({p}1, t) ) γc,1Phr(t) + γc,2Wc(t)Phc(t) (93)

Ic({p}2, t) ) γ′c,1Phc(t) + γ′c,2Wc(t)Phc(t) (94)

Is({p}1, t) ) Cs,1[Ph(t) + Kc,1W(t)Ph(t)] (95)

Is({p}2, t) ) Cs,2[Ph(t) + Kc,2W(t)Ph(t)] (96)

a(R0) ) 5
6
(Kc,1 - Kc,2) b(R0) ) 5

2
(Kc,1 + Kc,2) (97)
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increase the fluorescence signal detected, and this allows one
to essentially reduce the concentration of the fluorophores
embedded in the membranes, which has an evident advantage
because the experiments at very low concentrations of the
fluorophores are definitely less invasive. The same pertains to
labeled proteins incorporated into the membranes. Furthermore,
the same formulas, after appropriate adaptation, can be used in
the analysis of the excited-state processes of the fluorophores
embedded in a membrane suspension or in a solution phase, in
particular, when the fluorescence signals emitted by the pho-
toproducts are very low.

Equations 46-49, describing the parallel-beam-excitation and
high-aperture-detection fluorescence polarization experiments,
can be used in the description of the evanescent-wave-excitation
fluorescence polarization experiments on isotropically distributed
fluorophores at different kinds of interfaces. These relations
apply to the standard, one-excited-state problem, but they can
be easily adapted to the cases when the fluorophores undergo
different kinds of excited-state processes at the interfaces.

The expressions obtained in Section 6, which describe
confocal fluorescence polarization microscopy, enable very
precise identification of the relaxation times associated with the
kinetic fluorescence decay and those associated with the
dynamic evolution of the photoselected fluorophores. Hence,
the expressions obtained in Section 6 may find a successful
applications in the confocal fluorescence microscopy studies
of microscopic photochemical (microphotochemical) properties
of the compounds undergoing intramolecular charge transfer
(ICT), twisted intramolecular charge transfer (TICT), and
intramolecular proton transfer (IPT) processes in different media,
including the interfaces. On the other hand, because of the high
sensitivity of ICT, TICT, and IPT processes to environmental
properties (e.g., local polarity, polarizability, local viscosity, and
all other physicochemical local properties of the medium), the
fluorophores exhibiting such properties can be used as the probe
molecules in the photochemical bioimaging on a pixel-by-pixel
basis, leading to a deeper insight into the properties of a
biomedical sample under study. In such studies, to each pixel
an experimentally detected multiexponential fluorescence decay
surface can be ascribed, which can be subjected to numerical
optimization aimed at the recovery of the fluorescence decay
times and the corresponding emission- or excitation-wavelength-
dependent set of the amplitudes (pre-exponential factors). Such
analyses can be radically accelerated by the application of an
optimizer that separates the linear (e.g., the amplitudes) from
the nonlinear (e.g., the fluorescence decay time) model param-
eters, where the linear parameters are being recovered from the
multiple linear regresion. Such properties possess the variable
projection (VP) optimization method and its numerical imple-
mentation VAPRO35,36 and CORE optimizer.37 The optimizer
based on the convolved autoregressive model is very impor-
tant.38 It is a specially designed method for the analysis of the
fluorescence microscopy data. In our recent article39 we
introduced a genetic-algorithm-based optimization method (GA-
MLR) that combines genetic algorithm (GA) and multiple linear
regression (MLR) methods, where nonlinear parameters are
fitted by GA and the linear parameters are calculated from MLR.
As was demonstrated in ref 39, a combination of the GA-MLR
optimization method with the algorithm outlined in ref 40,
designed for the analysis of fluorescence decays of the
compounds undergoing the ICT, TICT, and IPT processes, may
be a very suitable optimization method in the analysis of the
data obtained from the photochemical bioimaging (e.g., the
recovery of the images of fluorescence lifetimes of both excited

states, the images of individual kinetic rates involved in the
excited-state relaxation process and the images of the amplitudes
and relative shifts of the emission bands of both excited-state
species).
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